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Abstract. This document contains theorem proofs for the paper A Temporal Theory for the Basic Formal Ontology.

Section 1: Introduction

In the following we use P, P’, Py, ... and p, p/, p1, ... to range over occurrent classes and instances,
respectively. We use C, C’, C1,... and ¢, ¢, c1, ... to range over continuant classes and instances. We
alsouse U, U’, Uy, ... and u, v/, uy, ... to range over spatiotemporal regional classes and instances, r,
r’,r1,... to range over spatial regions and ¢, t’, 1, . . . to range over temporal regions. Relations between
classes are depicted in italics, whereas all other relations are depicted in bold. The logical connectors —,
=, \, V, = and < have their usual interpretation. The symbol = 4. is used for definitions, V for universal
quantification, 3 for existential quantification, and 3!a abbreviates a statement to the effect that a unique
object a exists. We usually omit leading universal quantifiers in our formulae. Names of axioms begin
with ‘A’, names of definitions begin with ‘D’, names of lemmata begin with ‘L’, and names of theorems
begin with “T".

Py is_a Py =4 Vp. pinstance_of P; = p instance_of 1, (D1.1)

Chis_a Cy =4¢r Ve, t. cinstance_of C att = cinstance_of C; att (D1.2)
Pis_aP (L1.1)

Cis_aC (L1.2)

pinstance_of P; A P is_a P> = pinstance_of P, (L1.3)
cinstance_of C att A C7 is_a Cy = cinstance_of Cs at ¢ (L1.4)
Piis_a Py NPyis_a P3 = Pjis_a Pj (L1.5)
Cris_aCoNCyis_aCs3 = Ciis_aCs (L1.6)

Proof. L1.1 and L1.2 follow from D1.1 and D1.2 respectively. L1.3 and L1.4 can be proven by modus
ponens with D1.1 and D1.2 respectively. L1.5 and L1.6 can be proven by the transitivity of implication
with D1.1 and D1.2 respectively. [

p1 identical_to po = (VP. p; instance_of P < p, instance_of P) (AL.D)

¢y identical_to c; att = (VC. c; instance_of C' at t < ¢, instance_of C' at ¢) (A1.2)
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Henceforth we write p: P as an abbreviation for p instance_of P and c: C at ¢ as an abbreviation for
c instance_of C at t. Furthermore we write p1, ..., p, : P as an abbreviation of p1 : PA ... A p,: P and
c1,...,cp:C att as an abbreviation of ¢c;:C att A ... Ac,:C att.

p1 identical_to po» = p- identical_to p; L1.7)

c1 identical_to ¢ at t = ¢, identical_to c; at ¢ (L1.8)
p1: P A p; identical_to po = po: P (L1.9)

c1:C att A ¢y identical_tocy att = co:C att (L1.10)

Proof. 1.7 and L1.8 can be proved by Al.1 and A1.2 respectively. L1.9 and L.1.10 can be proven by
modus ponens with A1.1 and A1.2 respectively. []

(U:U1UU2)/\(U1HU2:(Z))/\u:U:>u:U1\/u:U2 (A1.3)

(U =U; U UQ) VAN (U1 NU; = @) AU is_a U = Uy is_a U’ A Usis_a U’ (Al.4)
p1 overlaps ps =4.; Jp. p part_of p; A p part_of py (D1.3)

ci overlaps co att =,4,; dc. cpart_of cy att A cpart_of co att (D1.4)

p1 discrete_from po = ;. —(p1 overlaps ps) (D1.5)

c1 discrete_from c, att =4, —(c; overlaps c; at ) (D1.6)

p1 overlaps ps < p2 overlaps p; (L1.11)

cy overlaps c; att < co overlaps c; at ¢ (L1.12)

Proof. L1.11 and L1.12 can be proved by unfolding D1.3 and D1.4. OJ

p1 part_of po < (Vp. p overlaps p; = p overlaps p2) (A1.5)

c1 part_of cp att < (Ve. coverlaps c¢; att = coverlaps ¢ at t) (A1.6)
p1 part_of pa A po part_of p; < p; identical_to po (A1.7)

cy part_of co att A co part_of ¢ att < c; identical_to c; at ¢ (A1.8)
p1 part_of pa A ps part_of p3 = p; part_of p3 (L1.13)

c1 part_of co att A co part_of c3 att = c; part_of c3 at ¢ (L1.14)

p part_of p (L1.15)

cpart_of catt (L1.16)

Proof. L1.13 and L1.15 can be proved by A1.5, whereas L1.14 and L1.16 can be proved by A1.6. [

p1 part_of po A ps identical_to p; = p; part_of p;3 (L1.17)
p1 part_of p3 A p; identical_to ps = ps part_of p3 (L1.18)
c1 part_of cy att A co identical_to c3 att = c; part_of cs att (L1.19)

c1 part_of c3 at ¢ A c; identical_to co att = co part_of cs att (L1.20)
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Proof. .1.17 and L1.18 can be proved by A1.7 and L.1.13, whereas L.1.19 and L.1.20 can be proved by A1.8

and L1.14. O

Py part_of Py =gef Vp1. p1:P1 = dpa. p2: P A py part_of po
C1 part_of Cy =gef Ver,t. c1:Cratt = 3eg. ca:Coatt Acy part_of ¢z att

p1 proper_part_of py =g p1 part_of po A —(p; identical_to po
c1 proper_part_of c; att =4.r c1 part_of co att A —(c; identical _to co at ¢

)

)

p1 partially_overlaps po =;.s p1 overlaps py A —(p1 part_of p2) A —(p2 part_of p;)
c1 partially_overlaps c; att =;.; ¢ overlaps c; at t A —(c; part_of c; at )

)

A —(co part_of ¢; at ¢

p1 overlaps p» = p; partially_overlaps p, V p; proper_part_of p»
V po proper_part_of p; V p; identical_to p
c1 overlaps c; at t = c; partially_overlaps c; at t VV ¢; proper_part_of c; at ¢

V co proper_part_of c; att \ c; identical_to co at ¢

(D1.7)
(D1.8)

(D1.9)
(D1.10)
(DI1.11)
(D1.12)

(L1.21)

(L1.22)

Proof. In order to prove L1.21, consider the case where —(p; identical_to po). By D1.3, there is some
p such that p part_of p; and p part_of ps. For the cases where p; part_of p» and p» part_of p;, then
p1 proper_part_of p; and ps proper_part_of p; by D1.9. If —(p; part_of p2) and —(p part_of p;) then

p1 partially_overlaps p, by D1.11. We construct a similar proof for L.1.22. [J

Section 2: Connected Regions

Spatiotemporal_Region is_a Occurrent

Temporal_Region is_a Occurrent
Connected_Spatiotemporal_Region is_a Spatiotemporal_Region
Connected_Temporal_Region is_a Temporal_Region
Spatial_Region is_a Continuant

Connected_Spatial_Region is_a Spatial_Region

(Connected_Spatiotemporal_Region

= Connected_Spatiotemporal_Instant U Connected_Spatiotemporal_Interval)

A (Connected_Spatiotemporal _Instant N Connected_Spatiotemporal_Interval = ()
Connected_Spatiotemporal_Instant is_a Connected_Spatiotemporal_Region
Connected_Spatiotemporal_Interval is_a Connected_Spatiotemporal_Region

u: Connected_Spatiotemporal_Region = u: Connected_Spatiotemporal_Instant

V u: Connected_Spatiotemporal_Interval

(A2.1)
(A2.2)
(A2.3)
(A2.4)
(A2.5)
(A2.6)

(A2.7)

(L2.1)
(L2.2)
(T2.1)



4 K. Trentelman / A Temporal Theory for the Basic Formal Ontology: Theorem Proofs

Proof. [.2.1 and [.2.2 can be proved by A2.7, Al.4 and L1.1, whereas T2.1 can be proved by A2.7
and A1.3. 00
u1 : Connected_Spatiotemporal_Region N us: Connected_Spatiotemporal_Instant (A2.8)
A ug part_of uo = uy: Connected_Spatiotemporal_Instant
uy : Connected_Spatiotemporal_Interval A us: Connected_Spatiotemporal_Region (A2.9)

A up part_of uo = us: Connected_Spatiotemporal_Interval

WU. U: Connected_Spatiotemporal _Interval (A2.10)

u: Connected_Spatiotemporal_Region = u part_of U (A2.11)

U : Connected_Spatiotemporal_Region (T2.2)

U : Spatiotemporal_Region (L2.3)

u: Connected_Spatiotemporal_Region N U part_of u = v identical_to I/ (T2.3)

Proof. T2.2 can be proved by A2.10, L.2.2 and L.1.3. L.2.3 can be proved by T2.2, A2.3 and L1.3, whereas
T2.3 can be proved by A2.11 and A1.7. U

uy, uz: Connected_Spatiotemporal_Region A uj part_of ug = time(u;) part_of time(uz) (A2.12)

u: Connected_Spatiotemporal_Region = time(time(u)) identical_to time(u) (A2.13)

T =gef time(U) (D2.1)

7 identical_to time(7) (T2.4)

u: Connected_Spatiotemporal_Region = time(u) part_of 7 (T2.5)
u1, ug : Connected_Spatiotemporal_Region A uy identical_to uo (T2.6)

= time(u ) identical_to time(us2)

Proof. T2.4 can be proved by A2.13, T2.2, LL1.7 and D2.1. T2.5 can be proved by A2.12, A2.11 and D2.1.
T2.6 can be proved by A2.12 and A1.7. J

u: Connected_Spatiotemporal_Region = 3t. time(u) identical_to ¢ (A2.14)
A t: Connected_Temporal_Region

t: Connected_Temporal_Region = Ju. time(u) identical to ¢ (A2.15)
A u: Connected_Spatiotemporal_Region

T : Connected_Temporal_Region (T2.7)

T : Temporal_Region (L2.4)

u: Connected_Spatiotemporal_Instant = time(u): Connected_Temporal_Region (L2.5)
u: Connected_Spatiotemporal_Interval = time(u): Connected_Temporal_Region (L2.6)

t: Connected_Temporal_Region = t part_of 7 (L2.7)
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Proof. T2.7 can be proved by T2.2, A2.14 and D2.1, whereas [.2.4 can be proved by T2.7, A2.4 and L1.3.
L.2.5 and L.2.6 can be proved by T2.1 and A2.14. L2.7 can be proved by A2.15, T2.5 and L1.18. [J

t: Connected_Temporal_Instant = ge t: Connected_Temporal_Region N duration(t) =0 (D2.2)
t: Connected_Temporal_Interval =def t: Connected_Temporal_Region A duration(t) > 0 (D2.3)

u: Connected_Spatiotemporal_Instant = duration(time(u)) =0 (A2.16)
u: Connected_Spatiotemporal_Interval = duration(time(u)) > 0 (A2.17)

u: Connected_Spatiotemporal_Instant = time(u): Connected_Temporal_Instant (L2.8)

u: Connected_Spatiotemporal_Interval = time(u): Connected_Temporal_Interval (L2.9)

Proof. L.2.8 can be proved by A2.16, L2.5 and D2.2, whereas L2.9 can be proved by A2.17, L2.6 and
D2.3.0

t1,to: Connected_Temporal_Region Aty part_of to = duration(t1) < duration(ts) (A2.18)

u1, ug: Connected_Spatiotemporal_Region N uy part_of us (A2.19)

= space(uy) part_of space(uz)

u: Connected_Spatiotemporal _Region = space(space(u)) identical_to space(u) (A2.20)
R =qef space(U) (D2.4)

R identical_to space(R) (T2.8)

u: Connected_Spatiotemporal_Region = space(u) part_of R (T2.9)

u1, ug: Connected_Spatiotemporal_Region N u; identical_to uo (T2.10)

= space(u;) identical_to space(us)

Proof. T2.8 can be proved by A2.20, T2.2, L.1.7 and D2.4. T2.9 can be proved by A2.19, A2.11 and D2 4.
T2.10 can be proved by A2.19 and A1.7. [J
u: Connected_Spatiotemporal_Region = Jr. space(u) identical_to r (A2.21)
A 1: Connected_Spatial_Region
r: Connected_Spatial_Region = Ju. space(u) identical_to r (A2.22)

A u: Connected_Spatiotemporal_Region

R : Connected_Spatial_Region (T2.11)
R : Spatial_Region (L2.10)
r: Connected_Spatial_Region = r part_of R (L2.11)

Proof. T2.11 can be proved by T2.2, A2.21 and D2.4. L2.10 can be proved by T2.11, A2.6 and L1.3.
L2.11 can be proved by A2.22, T2.9 and L.1.18. [
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Section 3: A Temporal Theory for Connected Temporal Regions

t1,ta,t,t": Connected_Temporal_Region A t; meetst At meetst' A to meetst (A3.1)
= t, meets t’

t1,ta,t,t': Connected_Temporal_Region A t; meetst A t meets to A t; meets t’ At meetsty (A3.2)
= t identical_to ¢’

t1,to: Connected_Temporal_Region N t, meets to (A3.3)

= (t1: Connected_Temporal_Interval \ ty: Connected_Temporal_Interval)

t1,to, t3,t4: Connected_Temporal_Region A t; meets to A t3 meets t4 (A3.4)
= 11 meets 4 V t3 meets to
V (3t'. t; meetst’ At meetsty) vV (3t”. t3 meetst” At” meets to)
—(t1 meets ty A to meets t;) (A3.5)

wsum_of (u1,u2) =45 Vu'. u overlaps u < (u’ overlaps u; V u’ overlaps us) (D3.1)

We also write u as u; + ug if and only if u sum_of (uy, uz).

uyp part_of (u1 + us) (L3.1)

ug part_of (u1 + us) (L3.2)

uy part_of u A us part_of u = (uj + usy) part_of u (L3.3)

uy part_of up = (u; + uz) identical_to uy (L3.4)

uy part_of up A v’ part_of u”’ A = (uy + ) part_of (ug + u”) (L3.5)
((u1 + u2) + ug) identical_to (u; + (uz + u3)) (L3.6)

Proof. .3.1, L.3.2 and 3.3 can be proved by D3.1 and A 1.5, whereas 1.3.4 can be proved by L1.15, L3.3,
L3.2 and A1.7. To prove 3.5, we assume u; part_ofu, and v’ part_ofv”, and prove u part_of (us + u”)
and u/part_of (us + v”) by L1.13 along with L3.1 and L3.2, respectively. We then prove the conclusion by
applying L.3.3. To prove L3.6, we deduce uzpart_of (us + us) and (ug + us)part_of (u; + (ug + us3)) by
L3.2. Therefore uz part_of (u; + (u2 + usz)) by L1.13. Call this result x. We know us part_of (ua + u3)
by L3.1 and therefore (u; + ug) part_of (u1 + (u2 + u3)) by L3.5 and L1.15. This latter result along with
the result x deduced previously tells us that ((u; + u2) + ug) part_of (u1 + (u2 + u3)) by L3.3. In much
the same way we can deduce (u; + (uz + ug)) part_of ((u1 + ug) + u3). We then prove the conclusion
by applying A1.7. J

t concatenation_of (t1,t2) =4 t1 meets to At sum_of (¢1,12) (D3.2)
ty starts t =g4.¢ 3to. to: Connected_Temporal_Region At concatenation_of (¢1, o) (D3.3)
toends t =g¢ 3t1. t1: Connected_Temporal_Region At concatenation_of (¢1,t2) (D3.4)
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t; meets to = 3t. t: Connected_Temporal_Region At concatenation_of (¢, 12)
A t1 starts ¢ A to ends ¢

t concatenation_of (¢1,t2) = duration(t) = duration(t1) + duration(ts)

t1 earlier_than ty =;.r 3t. t: Connected_Temporal_Region A t; meets t A t meets t3

t1 earlier_than_or_meets {5 =, 1 earlier_than ¢ V t; meets ¢

t: Connected_Temporal_Region = —(t earlier_than_or_meets t)
t1,ts: Connected_Temporal_Region At earlier_than_or_meets ¢

= —(t2 earlier_than_or_meets ¢;)

Proof. L.3.7 follows from A3.5, D3.5 and D3.6. L.3.8 follows from A3.4 and L3.7. [J

Section 4: Scattered Regions

u difference_of (ug, u1) =ger Vu'. u' overlaps u < (Ju”. u” part_of us

A" discrete_from u; A v’ overlaps u')

u, interior_part_of us =g.r u; proper_part_of us A Ju. u difference_of (us, u1)

A (Vu'. ' partially_overlaps u; = v’ overlaps u)

U1 Crosses up =go¢ u1 overlaps us A Ju. u difference_of (U, u2) A u; overlaps u

uy straddles us =g, Vu. u; interior_part_of u = u crosses us

—(u crosses u)

uq straddles us = —(uq interior_part_of us)

uq part_of us = wu, interior_part_of us V u, straddles uo

u difference_of ({/, u2) A u; overlaps v = —(u; part_of us)
uy crosses ug = —(u; part_of uz) A uj overlaps us

w1 partially_overlaps uo = u; crosses us /A uo Crosses

(A3.6)

(A3.7)

(D3.5)
(D3.6)

(L3.7)
(L3.8)

(D4.1)

(D4.2)

(D4.3)
(D4.4)

(L4.1)
(L4.2)
(T4.1)
(L4.3)
(L4.4)
(L4.5)

Proof. In order to prove L4.1, we assume u crosses u. A contradiction is created by unfolding D4.3,
D4.1 and D1.5, and by using L1.11. In order to prove [.4.2 suppose u; straddles us and assume
u; interior_part_of us. Then uy crosses us by D4.4 which contradicts L4.1. T4.1 can then be proved
by L4.2. We prove [4.3 by contradiction. We know there is some u” such that u” part_of ¢/ and
u” discrete_from us and u; overlaps u” by D4.1 and modus ponens. If we assume u; part_of uso, then

for any v if u"” overlaps u; then " overlaps us by A1.5. Let v’

be u”. Since u” overlaps u; by L1.11,
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we have u”” overlaps us which contradicts u” discrete_from us by D1.5. L4.4 can be proved by [.4.3 and
D4.3. 1L.4.5 follows from D1.11,L4.4 and L1.11. OJ

u' boundary_of u =45 Vu". u” part_of v’ = u" straddles u (D4.5)
u' closure_of u =g4.r Vu". u” boundary_of v = v’ sum_of (u, u") (D4.6)
uy separate_from us =g.r Ju}, uy. u) closure_of u; A uj closure_of uy (D4.7)

= ) discrete_from us A u; discrete_from v,

u’ closure_of u = 1 identical_to u (A4.1)

u1 discrete_from uo = u; separate_from uo (L4.6)

Proof. L4.6 can be proved by A4.1 and D4.7 with D1.5 and L1.11. O

', t": Connected_Temporal_Region A t' interior_part_of t’ (A4.2)

= Jt1,te. t1,ta: Connected_Temporal_Region A t" concatenation_of (t1,t',t5)
t',t"": Connected_Temporal_Region At proper_part_of t’ A ¢’ straddles ¢’ (A4.3)

= t' starts " v t' ends "’
t1,ta: Connected_Temporal_Region A t1 crosses to (Ad.4)

= 3, t,t". t' t. t": Connected_Temporal_Region

A (t1 concatenation_of (', t) A to concatenation_of (¢,¢"))

V (to concatenation_of (¢',t) A t; concatenation_of (¢,t"))

t' during ¢ =;.; t' interior_part_of " (D4.8)
t',t": Connected_Temporal_Region A t' proper_part_of t” = t' startst” \/ ¢’ ends t” (T4.2)
Vv t' during t”

Proof. T4.2 can be proved by T4.1, D4.8 and A4.3. 0

t1,to: Connected_Temporal_Region At earlier_than_or_meets to = t; discrete_from ¢to (L4.7)

Proof. We prove L.4.7 by contradicition. Assume —(¢; discrete_fromts), i.e. t; overlapste by D1.5. Then
by L1.21 one of the following holds: ¢; identical_to ¢, or ¢; proper_part_oft, or {5 proper_part_oft; or
t; partially_overlapsts. Consider the case where ¢; identical_tot,. Suppose t; meetsto, then a contradic-
tion arises from A3.5. Suppose t; earlier_than ¢,, then there is some ¢ such that ¢; meets ¢ and ¢ meets ¢,
by D3.5, and a contradiction again arises from A3.5. Consider the case where ¢; proper_part_of o, then
t, starts to or ¢; ends ¢, or t; during to by T4.2. Whether ¢; meets ¢5 or ¢; earlier_than ¢, it is possible
to build concatenations using D3.2 with D3.3, D3.4, D4.8 and A4.2 such that a contradiction arises from
A3.5. We can similarly create a contradiction for the case where to proper_part_of ¢;. Now consider
the case where ¢, partially_overlaps to. Then ¢; crosses ¢ by 1.4.5, and there is some ¢’, ¢ and ¢ such
that either ¢, concatenation_of (', ¢) and t» concatenation_of (¢,¢”), or to concatenation_of (¢, ¢) and
t1 concatenation_of (¢,t”) by A4.4. Whether ¢, meets to or t; earlier_than ¢, it is possible to build
concatenations using D3.2 such that a contradiction arises from A3.5. [J
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t1,to: Connected_Temporal_Region A t; earlier_than_or_meets {5 = ¢; separate_from ¢, (T4.3)

Proof. T4.3 can be proved by L.4.7 and L4.6. [
Note that in the sequel the formula /\?;11 x;rel z; 11 can be interpreted as z1 rel zo A zorelzs A ... A
zn—1 rel x, for any relation rel between instances z1, . .., Ty.

r: Scattered_Spatial_Region =ger 311, ..., 70, T1,...,75: Connected_Spatial_Region — (D4.9)

n—1
A rsum_of (r1,...,7,) A /\ r; discrete_from r;
i=1
(Spatial_Region = Connected_Spatial_Region U Scattered_Spatial_Region) (A4.5)

A (Connected_Spatial_Region N Scattered_Spatial_Region = ()

r: Connected_Spatial_Region V r: Scattered_Spatial_Region (T4.4)
r: Scattered_Spatial_Region = r part_of R (L4.8)
r part_of R (T4.5)

Proof. T4.4 can be proved by A4.5 and A1.3. L4.8 can be proved by D4.9, L.2.11, L3.3 and L3.6. T4.5
can be proved by T4.4, L.2.11 and L4.8. [J

r: Spatial_Region = Vt. r:Spatial_Region att (A4.6)
ry part_of ro = Vt. r; part_of ro att (A4.7)
u: Scattered_Spatiotemporal_Region = 4.y (D4.10)
Juq, .. Up. UL, ..., Uy Connected_Spatiotemporal_Region
A usum_of (uy, ..., uy,)
n—1
A( /\ time(u;) earlier_than_or_meets time(u;41)
i=1
n—1
v /\ space(u;) discrete_from space(u;y1))
i=1
(Spatiotemporal_Region (A4.8)

= Connected_Spatiotemporal_Region U Scattered_Spatiotemporal_Region)
A (Connected_Spatiotemporal _Region N Scattered_Spatiotemporal_Region = ()

u: Connected_Spatiotemporal_Region V u: Scattered_Spatiotemporal_Region (T4.6)
u: Scattered_Spatiotemporal_Region = u part_of U (L4.9)
u part_of U (T4.7)

w: Spatiotemporal_Region N\ U part_of u = u identical_to I/ (L4.10)
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Proof. T4.6 can be proved by A4.8 and A1.3. L4.9 can be proved by D4.10, A2.11, L.3.3 and L.3.6. T4.7
can be proved by T4.6, A2.11 and L.4.9. L.4.10 can be proved by T4.7 and A1.7. [J

t: Scattered_Temporal_Region = 4.y (D4.11)
Iy, ..., tn. t1,...,t: Connected_Temporal_Region
n—1
A tsum_of (t1,...,t,) A /\ t; earlier_than_or_meets ¢, |
i=1

(Temporal_Region = Connected_Temporal_Region U Scattered_Temporal_Region) (A4.9)
A (Connected_Temporal_Region N Scattered_Temporal _Region = @)

t: Connected_Temporal_Region V t: Scattered_Temporal_Region (T4.8)
t: Scattered_Temporal_Region = t part_of T (L4.11)
t part_of 7 (T4.9)

Proof. T4.8 can be proved by A4.9 and A1.3. L4.11 can be proved by D4.11, L2.7,L3.3 and L3.6, whereas
T4.9 can be proved by T4.8, .2.7 and L4.11. [J

w: Scattered_Spatiotemporal_Instant = 4eop u: Scattered_Spatiotemporal_Region (D4.12)
A usum_of (ui, ..., up)
A uq : Connected_Spatiotemporal_Instant

A ... A uy: Connected_Spatiotemporal_Instant

u: Scattered_Spatiotemporal_Interval = 4. w: Scattered_Spatiotemporal _Region (D4.13)
A wsum_of (ui, ..., up)
A (uy : Connected_Spatiotemporal_Interval

V...V uy: Connected_Spatiotemporal_Interval)

(Spatiotemporal_Instant (A4.10)

= Connected_Spatiotemporal_Instant U Scattered_Spatiotemporal_Instant)

A (Connected_Spatiotemporal _Instant N Scattered_Spatiotemporal_Instant = ()
(Spatiotemporal_Interval (A4.11)

= Connected_Spatiotemporal_Interval U Scattered_Spatiotemporal_Interval)

A (Connected_Spatiotemporal_Interval N Scattered_Spatiotemporal _Interval = ()

—(u part_of 7)) A —(u part_of R) A —(t part_of U) N\ —(t part_of R) (A4.12)
A —(r part_of U) A —=(r part_of 7)
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Section 5: Processual Entities and Independent Continuants

Processual_Entity is_a Occurrent (AS5.1)

Independent_Continuant is_a Continuant (A5.2)

p has_participant c at t A ¢’ part_of t = p has_participant c at ¢/ (A5.3)

P has_participant C =gep Vp. p: P = Jc,t. c:C att A p has_participant c at ¢ (D5.1)

cexists_att = . t: Connected_Temporal_Instant A Jp. p has_participant c at ¢ (D5.2%)
poceurs_at t =;.¢ t: Connected_Temporal_Instant A Jc. p has_participant c at ¢ (D5.3%)

cexists_att =,4.r Vt'. ¢’ part_oft = 3p. phas_participant c at ¢’ (D5.2)
poccurs_att =4 Vt'. t' part_of t = 3c. p has_participant c at ¢’ (D5.3)
cexists_att A t' part_of t = c exists_at t’ (A5.4)

poccurs_att At part_of t = p occurs_att’ (A5.5)

c exists_at t1 A c exists_at to A\ t concatenation_of (¢1,t2) = c exists_at ¢ (A5.6)
poccurs_at 1 A p occurs_at to A ¢ concatenation_of (¢1,¢2) = p occurs_at ¢ (A5.7)
t first_instant_of p = ;. t: Connected_Temporal_Instant N p occurs_at t (D5.4)

A (Vt'. t earlier_than_or_meets t = —(p occurs_at t'))
t last_instant_of p = ;. t: Connected_Temporal_Instant A p occurs_at ¢ (D5.5)

A (Vt'. tearlier_than_or_meets ¢’ = —(p occurs_att'))

c1 located_in c3 att =gor 3r1,72. c1 located_inry att A co located_in 7o at ¢ (D5.6)
= r1 part_of ry
C1 located_in Cy =g4¢ Ve, t. cp instance_of Cp att = dcy. ¢y instance_of (5 at ¢ (D5.7)

A c1 located_in c; at ¢

p located_at u A t difference_of (7, time(u)) = p occurs_at time(u) A =(p occurs_att)  (A5.8)
plocated_at u A p has_participant c at ¢t A clocated_inr att (AS5.9)

= r part_of space(u) A t part_of time(u)
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p: Instantaneously_Occurring_Processual_Entity

=gef Ju,t. plocated_at u A ¢ identical_to time(u) A t: Temporal_Instant

plocated_at u A u: Connected_Spatiotemporal_Region A t first_instant_of p
= t starts time(u)
plocated_at u A w: Scattered_Spatiotemporal_Region A usam_of (uy, . .., uy,)

At first_instant_of p = ¢ starts time(u;)

p’ preceded_by p =gef 3t, t'. t,t': Connected_Temporal_Instant

A poccurs_att A p’ occurs_at t’ At earlier_than ¢/

p’ preceded_by p =4.r Ju,u’. plocated_at u A plocated_at v’

A ((u,u’: Connected_Spatiotemporal_Region = time(u) earlier_than time(u'))
V (u: Connected_Spatiotemporal _Region A u': Scattered_Spatiotemporal_Region
A sum_of (uf, ..., ul) = time(u) earlier_than time(u}))

V (u: Scattered_Spatiotemporal_Region N u': Connected_Spatiotemporal_Region
Ausum_of (uy, ..., u,) = time(u,) earlier_than time(u'))

V (u: Scattered_Spatiotemporal_Region A u': Scattered_Spatiotemporal_Region
Ausum_of (uy, ..., u,) A v sum_of (uf,... u;,)

= time(uy,) earlier_than time(u})))

t last_instant_of p A ¢’ first_instant_of p’ A ¢ earlier_than t’

= p' preceded_by p

Proof. T5.1 follows from D5.4, D5.5 and D5.9. (O

P preceded_by P’ =def Vp. p: P = Jp’. p': P A p preceded_by p’
p' immediately_preceded_by p =.; 3¢. ¢last_instant_of p A ¢ first_instant_of p/

(D5.8)

(A5.10)

(AS5.11)

(D5.9%)

(D5.9)

(TS.1)

(D5.10)
(D5.11%)
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p' immediately_preceded_by p =y (D5.11)
Ju,u’. plocated_atu A plocated_at v’
= (p, P Instantaneously _Occurring_Processual_Entity)

A ((u,u’: Connected_Spatiotemporal_Region = time(u) meets time(u'))

V (u: Connected_Spatiotemporal_Region A u': Scattered_Spatiotemporal_Region
A sum_of (uf, ..., ul) = time(u) meets time(u}))

V (u: Scattered_Spatiotemporal_Region A u': Connected_Spatiotemporal_Region
Ausum_of (uy, ..., u,) = time(u,) meets time(u'))

V (u: Scattered_Spatiotemporal_Region A u': Scattered_Spatiotemporal_Region
Awsam_of (uy, ..., u,) A v sum_of (u}, ..., ul)

= time(u, ) meets time(u})))

C' transformation_of C =gef Ve, t. c:Catt = . c:C" att (D5.12)
At earlier_than_or_meets t' A =(3t”. c:Catt” Ac:C" att”)

¢ derives_from c = Vt. —(cidentical_to ¢’ att) (A5.12)

¢ derives_from c = 3tq,ts. t1,ta: Connected_Temporal_Interval (A.5.13)
A cexists_att; A (Vt]. t; earlier_than_or_meets t| = —(c exists_at?}))
A c exists_atto A (V). t, earlier_than_or_meets to = —(c’ exists_at t}))
A dt. t: Connected_Temporal_Region At ends t; At starts to

A (clocated_in r at t A ¢’ located_in r’ att = r overlaps 1’ at t)

C' derives_immediately_from C =def Ve, t. c:C att (D5.13)
= 3¢,t. :C"att’ At earlier_than_or_meets t' A ¢’ derives_from c
n—1
Cy, derives_from Co = gef /\ C;+1 derives_from C; (D5.14)

=0



