A Temporal Theory for the Basic Formal Ontology: Theorem Proofs Kerry Trentelman Ontology Research Group, State University of New York at Buffalo E-mail: kerrytre@buffalo.edu Abstract. This document contains theorem proofs for the paper A Temporal Theory for the Basic Formal Ontology. ### **Section 1: Introduction** In the following we use P, P', P_1, \ldots and p, p', p_1, \ldots to range over occurrent classes and instances, respectively. We use C, C', C_1, \ldots and c, c', c_1, \ldots to range over continuant classes and instances. We also use U, U', U_1, \ldots and u, u', u_1, \ldots to range over spatiotemporal regional classes and instances, r, r', r_1, \ldots to range over spatial regions and t, t', t_1, \ldots to range over temporal regions. Relations between classes are depicted in italics, whereas all other relations are depicted in bold. The logical connectors \neg , =, \wedge , \vee , \Rightarrow and \Leftrightarrow have their usual interpretation. The symbol $=_{def}$ is used for definitions, \forall for universal quantification, \exists for existential quantification, and $\exists ! a$ abbreviates a statement to the effect that a unique object a exists. We usually omit leading universal quantifiers in our formulae. Names of axioms begin with 'A', names of definitions begin with 'D', names of lemmata begin with 'L', and names of theorems begin with 'T'. $$P_1 is_a P_2 =_{def} \forall p. \ p \text{ instance_of } P_1 \Rightarrow p \text{ instance_of } P_2$$ (D1.1) $$C_1 is_a C_2 =_{def} \forall c, t. \ c \text{ instance_of } C_1 \text{ at } t \Rightarrow c \text{ instance_of } C_2 \text{ at } t$$ (D1.2) $$P is_a P$$ (L1.1) $$C ext{ is } a ext{ } C ext{ } ext{(L1.2)}$$ $$p$$ instance_of $P_1 \wedge P_1$ is_a $P_2 \Rightarrow p$ instance_of P_2 (L1.3) $$c$$ instance_of C_1 at $t \wedge C_1$ is_a $C_2 \Rightarrow c$ instance_of C_2 at t (L1.4) $$P_1 is_a P_2 \wedge P_2 is_a P_3 \Rightarrow P_1 is_a P_3$$ (L1.5) $$C_1 \text{ is } a C_2 \wedge C_2 \text{ is } a C_3 \Rightarrow C_1 \text{ is } a C_3$$ (L1.6) **Proof.** L1.1 and L1.2 follow from D1.1 and D1.2 respectively. L1.3 and L1.4 can be proven by *modus* ponens with D1.1 and D1.2 respectively. L1.5 and L1.6 can be proven by the transitivity of implication with D1.1 and D1.2 respectively. \Box $$p_1$$ identical_to $p_2 \Rightarrow (\forall P. \ p_1 \text{ instance_of } P \Leftrightarrow p_2 \text{ instance_of } P)$ (A1.1) $$c_1$$ identical_to c_2 at $t \Rightarrow (\forall C. \ c_1 \text{ instance_of } C \text{ at } t \Leftrightarrow c_2 \text{ instance_of } C \text{ at } t)$ (A1.2) Henceforth we write p:P as an abbreviation for p **instance_of** P and c:C **at** t as an abbreviation for c **instance_of** C **at** t. Furthermore we write $p_1, \ldots, p_n:P$ as an abbreviation of $p_1:P \land \ldots \land p_n:P$ and $c_1, \ldots, c_n:C$ **at** t as an abbreviation of $c_1:C$ **at** $t \land \ldots \land c_n:C$ **at** t. $$p_1$$ identical_to $p_2 \Rightarrow p_2$ identical_to p_1 (L1.7) $$c_1$$ identical_to c_2 at $t \Rightarrow c_2$ identical_to c_1 at t (L1.8) $$p_1: P \wedge p_1 \text{ identical_to } p_2 \Rightarrow p_2: P$$ (L1.9) $$c_1: C \text{ at } t \wedge c_1 \text{ identical_to } c_2 \text{ at } t \Rightarrow c_2: C \text{ at } t$$ (L1.10) **Proof.** L1.7 and L1.8 can be proved by A1.1 and A1.2 respectively. L1.9 and L1.10 can be proven by *modus ponens* with A1.1 and A1.2 respectively. \Box $$(U = U_1 \cup U_2) \land (U_1 \cap U_2 = \emptyset) \land u : U \Rightarrow u : U_1 \lor u : U_2$$ (A1.3) $$(U = U_1 \cup U_2) \wedge (U_1 \cap U_2 = \emptyset) \wedge U \text{ is_a } U' \Rightarrow U_1 \text{ is_a } U' \wedge U_2 \text{ is_a } U'$$ (A1.4) $$p_1$$ overlaps $p_2 =_{def} \exists p. \ p \text{ part_of } p_1 \land p \text{ part_of } p_2$ (D1.3) $$c_1$$ overlaps c_2 at $t =_{def} \exists c. \ c \text{ part_of } c_1 \text{ at } t \land c \text{ part_of } c_2 \text{ at } t$ (D1.4) $$p_1$$ discrete_from $p_2 =_{def} \neg (p_1 \text{ overlaps } p_2)$ (D1.5) $$c_1$$ discrete_from c_2 at $t =_{def} \neg (c_1 \text{ overlaps } c_2 \text{ at } t)$ (D1.6) $$p_1$$ overlaps $p_2 \Leftrightarrow p_2$ overlaps p_1 (L1.11) $$c_1$$ overlaps c_2 at $t \Leftrightarrow c_2$ overlaps c_1 at t (L1.12) **Proof.** L1.11 and L1.12 can be proved by unfolding D1.3 and D1.4. \square $$p_1 \operatorname{part_of} p_2 \Leftrightarrow (\forall p. \ p \operatorname{overlaps} p_1 \Rightarrow p \operatorname{overlaps} p_2)$$ (A1.5) $$c_1$$ part_of c_2 at $t \Leftrightarrow (\forall c. \ c \text{ overlaps } c_1 \text{ at } t \Rightarrow c \text{ overlaps } c_2 \text{ at } t)$ (A1.6) $$p_1 \operatorname{part_of} p_2 \wedge p_2 \operatorname{part_of} p_1 \Leftrightarrow p_1 \operatorname{identical_to} p_2$$ (A1.7) $$c_1$$ part_of c_2 at $t \wedge c_2$ part_of c_1 at $t \Leftrightarrow c_1$ identical_to c_2 at t (A1.8) $$p_1 \operatorname{part_of} p_2 \wedge p_2 \operatorname{part_of} p_3 \Rightarrow p_1 \operatorname{part_of} p_3$$ (L1.13) $$c_1 \operatorname{part_of} c_2 \operatorname{at} t \wedge c_2 \operatorname{part_of} c_3 \operatorname{at} t \Rightarrow c_1 \operatorname{part_of} c_3 \operatorname{at} t$$ (L1.14) $$p \operatorname{part_of} p$$ (L1.15) $$c \operatorname{part_of} c \operatorname{at} t$$ (L1.16) **Proof.** L1.13 and L1.15 can be proved by A1.5, whereas L1.14 and L1.16 can be proved by A1.6. \square $$p_1 \operatorname{part_of} p_2 \wedge p_2 \operatorname{identical_to} p_3 \Rightarrow p_1 \operatorname{part_of} p_3$$ (L1.17) $$p_1$$ part_of $p_3 \wedge p_1$ identical_to $p_2 \Rightarrow p_2$ part_of p_3 (L1.18) $$c_1$$ part_of c_2 at $t \wedge c_2$ identical_to c_3 at $t \Rightarrow c_1$ part_of c_3 at t (L1.19) $$c_1$$ part_of c_3 at $t \wedge c_1$ identical_to c_2 at $t \Rightarrow c_2$ part_of c_3 at t (L1.20) **Proof.** L1.17 and L1.18 can be proved by A1.7 and L1.13, whereas L1.19 and L1.20 can be proved by A1.8 and L1.14. \square $$P_1 \ part_of \ P_2 =_{def} \forall p_1. \ p_1 : P_1 \Rightarrow \exists p_2. \ p_2 : P_2 \land p_1 \ part_of \ p_2$$ (D1.7) $$C_1 \ part_of \ C_2 =_{def} \forall c_1, t. \ c_1 : C_1 \ \text{at} \ t \Rightarrow \exists c_2. \ c_2 : C_2 \ \text{at} \ t \wedge c_1 \ \text{part_of} \ c_2 \ \text{at} \ t$$ (D1.8) $$p_1$$ proper_part_of $p_2 =_{def} p_1$ part_of $p_2 \land \neg (p_1 \text{ identical_to } p_2)$ (D1.9) $$c_1$$ proper_part_of c_2 at $t =_{def} c_1$ part_of c_2 at $t \land \neg (c_1 \text{ identical_to } c_2 \text{ at } t)$ (D1.10) $$p_1$$ partially_overlaps $p_2 =_{def} p_1$ overlaps $p_2 \land \neg (p_1 \text{ part_of } p_2) \land \neg (p_2 \text{ part_of } p_1)$ (D1.11) $$c_1$$ partially_overlaps c_2 at $t =_{def} c_1$ overlaps c_2 at $t \land \neg (c_1 \text{ part_of } c_2 \text{ at } t)$ (D1.12) $\land \neg (c_2 \text{ part_of } c_1 \text{ at } t)$ $$p_1$$ overlaps $p_2 \Rightarrow p_1$ partially_overlaps $p_2 \lor p_1$ proper_part_of p_2 (L1.21) $\lor p_2$ proper_part_of $p_1 \lor p_1$ identical_to p_2 $$c_1$$ overlaps c_2 at $t \Rightarrow c_1$ partially_overlaps c_2 at $t \lor c_1$ proper_part_of c_2 at $t \lor c_2$ proper_part_of c_1 at $t \lor c_1$ identical_to c_2 at $t \lor c_2$ **Proof.** In order to prove L1.21, consider the case where $\neg(p_1 \text{ identical_to } p_2)$. By D1.3, there is some p such that p part_of p_1 and p part_of p_2 . For the cases where p_1 part_of p_2 and p_2 part_of p_1 , then p_1 proper_part_of p_2 and p_2 proper_part_of p_1 by D1.9. If $\neg(p_1 \text{ part_of } p_2)$ and $\neg(p_2 \text{ part_of } p_1)$ then p_1 partially_overlaps p_2 by D1.11. We construct a similar proof for L1.22. \square # **Section 2: Connected Regions** | $Spatiotemporal_Region\ is_a\ Occurrent$ | (A2.1) | |---------------------------------------------------------------------------------------------------------------------|--------| | $Temporal_Region\ is_a\ Occurrent$ | (A2.2) | | $Connected_Spatiotemporal_Region\ is_a\ Spatiotemporal_Region$ | (A2.3) | | $Connected_Temporal_Region\ is_a\ Temporal_Region$ | (A2.4) | | $Spatial_Region\ is_a\ Continuant$ | (A2.5) | | $Connected_Spatial_Region\ is_a\ Spatial_Region$ | (A2.6) | | | | | $(Connected_Spatiotemporal_Region$ | (A2.7) | | $= Connected_Spatiotemporal_Instant \cup Connected_Spatiotemporal_Interval)$ | | | $\land (\mathit{Connected_Spatiotemporal_Instant} \cap \mathit{Connected_Spatiotemporal_Interval} = \emptyset)$ | | | $Connected_Spatiotemporal_Instant\ is_a\ Connected_Spatiotemporal_Region$ | (L2.1) | | $Connected_Spatiotemporal_Interval\ is_a\ Connected_Spatiotemporal_Region$ | (L2.2) | | $u: Connected_Spatiotemporal_Region \Rightarrow u: Connected_Spatiotemporal_Instant$ | (T2.1) | | $\lor u : Connected_Spatiotemporal_Interval$ | | **Proof.** L2.1 and L2.2 can be proved by A2.7, A1.4 and L1.1, whereas T2.1 can be proved by A2.7 and A1.3. \Box u_1 : $Connected_Spatiotemporal_Region \land u_2$: $Connected_Spatiotemporal_Instant$ (A2.8) $\land u_1$ **part_of** $u_2 \Rightarrow u_1$: Connected_Spatiotemporal_Instant u_1 : $Connected_Spatiotemporal_Interval \land u_2$: $Connected_Spatiotemporal_Region$ (A2.9) $\land u_1$ **part_of** $u_2 \Rightarrow u_2$: $Connected_Spatiotemporal_Interval$ $\exists ! \mathcal{U}. \ \mathcal{U}: Connected_Spatiotemporal_Interval$ (A2.10) $u: Connected_Spatiotemporal_Region \Rightarrow u \text{ part_of } \mathcal{U}$ (A2.11) $U: Connected_Spatiotemporal_Region$ (T2.2) $U: Spatiotemporal_Region$ (L2.3) $u: Connected_Spatiotemporal_Region \land \mathcal{U}$ part_of $u \Rightarrow u$ identical_to \mathcal{U} (T2.3) **Proof.** T2.2 can be proved by A2.10, L2.2 and L1.3. L2.3 can be proved by T2.2, A2.3 and L1.3, whereas T2.3 can be proved by A2.11 and A1.7. \square u_1, u_2 : $Connected_Spatiotemporal_Region \land u_1 \ \mathbf{part_of} \ u_2 \Rightarrow time(u_1) \ \mathbf{part_of} \ time(u_2)$ (A2.12) $u: Connected_Spatiotemporal_Region \Rightarrow time(time(u))$ identical_to time(u) (A2.13) $\mathcal{T} =_{def} time(\mathcal{U}) \tag{D2.1}$ T identical_to time(T) (T2.4) $u: Connected_Spatiotemporal_Region \Rightarrow time(u) \text{ part_of } \mathcal{T}$ (T2.5) u_1, u_2 : Connected_Spatiotemporal_Region $\wedge u_1$ identical_to u_2 (T2.6) $\Rightarrow time(u_1)$ identical_to $time(u_2)$ **Proof.** T2.4 can be proved by A2.13, T2.2, L1.7 and D2.1. T2.5 can be proved by A2.12, A2.11 and D2.1. T2.6 can be proved by A2.12 and A1.7. \square $u: Connected_Spatiotemporal_Region \Rightarrow \exists t. \ time(u) \ identical_to \ t$ (A2.14) $\land t: Connected_Temporal_Region$ $t: Connected_Temporal_Region \Rightarrow \exists u. \ time(u) \ identical_to \ t$ (A2.15) $\land \ u \colon Connected_Spatiotemporal_Region$ $T: Connected_Temporal_Region$ (T2.7) $T: Temporal_Region$ (L2.4) $u: Connected_Spatiotemporal_Instant \Rightarrow time(u): Connected_Temporal_Region$ (L2.5) $u: Connected_Spatiotemporal_Interval \Rightarrow time(u): Connected_Temporal_Region$ (L2.6) $t: Connected_Temporal_Region \Rightarrow t \text{ part_of } \mathcal{T}$ (L2.7) **Proof.** T2.7 can be proved by T2.2, A2.14 and D2.1, whereas L2.4 can be proved by T2.7, A2.4 and L1.3. L2.5 and L2.6 can be proved by T2.1 and A2.14. L2.7 can be proved by A2.15, T2.5 and L1.18. \Box $t: Connected_Temporal_Instant =_{def} t: Connected_Temporal_Region \land duration(t) = 0$ (D2.2) $t: Connected_Temporal_Interval =_{def} t: Connected_Temporal_Region \land duration(t) > 0$ (D2.3) $u: Connected_Spatiotemporal_Instant \Rightarrow duration(time(u)) = 0$ (A2.16) $u: Connected_Spatiotemporal_Interval \Rightarrow duration(time(u)) > 0$ (A2.17) $u: Connected_Spatiotemporal_Instant \Rightarrow time(u): Connected_Temporal_Instant$ (L2.8) $u: Connected_Spatiotemporal_Interval \Rightarrow time(u): Connected_Temporal_Interval$ (L2.9) **Proof.** L2.8 can be proved by A2.16, L2.5 and D2.2, whereas L2.9 can be proved by A2.17, L2.6 and D2.3. \Box $t_1, t_2 : Connected_Temporal_Region \land t_1 \ \mathbf{part_of} \ t_2 \Rightarrow duration(t_1) \leq duration(t_2)$ (A2.18) u_1, u_2 : Connected_Spatiotemporal_Region $\wedge u_1$ part_of u_2 (A2.19) $\Rightarrow space(u_1)$ part_of $space(u_2)$ $u: Connected_Spatiotemporal_Region \Rightarrow space(space(u))$ identical_to space(u) (A2.20) $\mathcal{R} =_{def} space(\mathcal{U})$ (D2.4) \mathcal{R} identical_to $space(\mathcal{R})$ (T2.8) $u: Connected_Spatiotemporal_Region \Rightarrow space(u)$ part_of \mathcal{R} (T2.9) u_1, u_2 : Connected_Spatiotemporal_Region $\wedge u_1$ identical_to u_2 (T2.10) $\Rightarrow space(u_1)$ identical_to $space(u_2)$ **Proof.** T2.8 can be proved by A2.20, T2.2, L1.7 and D2.4. T2.9 can be proved by A2.19, A2.11 and D2.4. T2.10 can be proved by A2.19 and A1.7. \square $u: Connected_Spatiotemporal_Region \Rightarrow \exists r. \ space(u) \ identical_to \ r$ (A2.21) $\land r: Connected_Spatial_Region$ $r: Connected_Spatial_Region \Rightarrow \exists u. \ space(u) \ identical_to \ r$ (A2.22) $\land u : Connected_Spatiotemporal_Region$ $\mathcal{R}: Connected_Spatial_Region$ (T2.11) $\mathcal{R}: Spatial_Region$ (L2.10) $r: Connected_Spatial_Region \Rightarrow r \text{ part_of } \mathcal{R}$ (L2.11) **Proof.** T2.11 can be proved by T2.2, A2.21 and D2.4. L2.10 can be proved by T2.11, A2.6 and L1.3. L2.11 can be proved by A2.22, T2.9 and L1.18. \Box ### **Section 3: A Temporal Theory for Connected Temporal Regions** $$t_1, t_2, t, t'$$: $Connected_Temporal_Region \wedge t_1$ meets $t \wedge t_1$ meets $t' \wedge t_2$ meets t' (A3.1) $\Rightarrow t_2$ meets t' t_1, t_2, t, t' : $Connected_Temporal_Region \wedge t_1$ meets $t \wedge t$ meets $t_2 \wedge t_1$ meets $t' \wedge t'$ meets t_2 (A3.2) $\Rightarrow t$ identical_to t' $$t_1, t_2$$: $Connected_Temporal_Region \land t_1$ **meets** t_2 (A3.3) \Rightarrow $(t_1: Connected_Temporal_Interval \lor t_2: Connected_Temporal_Interval)$ $$t_1, t_2, t_3, t_4$$: Connected_Temporal_Region $\land t_1$ meets $t_2 \land t_3$ meets t_4 (A3.4) $\Rightarrow t_1$ meets $t_4 \lor t_3$ meets t_2 $$\vee (\exists t'. \ t_1 \text{ meets } t' \wedge t' \text{ meets } t_4) \vee (\exists t''. \ t_3 \text{ meets } t'' \wedge t'' \text{ meets } t_2)$$ $$\neg(t_1 \text{ meets } t_2 \land t_2 \text{ meets } t_1) \tag{A3.5}$$ $$u \operatorname{sum_of}(u_1, u_2) =_{def} \forall u'. \ u' \operatorname{overlaps} u \Leftrightarrow (u' \operatorname{overlaps} u_1 \vee u' \operatorname{overlaps} u_2)$$ (D3.1) We also write u as $u_1 + u_2$ if and only if u sum_of (u_1, u_2) . $$u_1 \text{ part_of } (u_1 + u_2)$$ (L3.1) $$u_2 \text{ part_of } (u_1 + u_2)$$ (L3.2) $$u_1 \operatorname{part_of} u \wedge u_2 \operatorname{part_of} u \Rightarrow (u_1 + u_2) \operatorname{part_of} u$$ (L3.3) $$u_1 \operatorname{part_of} u_2 \Rightarrow (u_1 + u_2) \operatorname{identical_to} u_2$$ (L3.4) $$u_1 \operatorname{part_of} u_2 \wedge u' \operatorname{part_of} u'' \wedge \Rightarrow (u_1 + u') \operatorname{part_of} (u_2 + u'')$$ (L3.5) $$((u_1 + u_2) + u_3)$$ identical_to $(u_1 + (u_2 + u_3))$ (L3.6) **Proof.** L3.1, L3.2 and L3.3 can be proved by D3.1 and A1.5, whereas L3.4 can be proved by L1.15, L3.3, L3.2 and A1.7. To prove L3.5, we assume u_1 **part_of** u_2 and u' **part_of** u'', and prove u_1 **part_of** $(u_2 + u'')$ and u' **part_of** $(u_2 + u'')$ by L1.13 along with L3.1 and L3.2, respectively. We then prove the conclusion by applying L3.3. To prove L3.6, we deduce u_3 **part_of** $(u_2 + u_3)$ and $(u_2 + u_3)$ **part_of** $(u_1 + (u_2 + u_3))$ by L3.2. Therefore u_3 **part_of** $(u_1 + (u_2 + u_3))$ by L1.13. Call this result \star . We know u_2 **part_of** $(u_2 + u_3)$ by L3.1 and therefore $(u_1 + u_2)$ **part_of** $(u_1 + (u_2 + u_3))$ by L3.5 and L1.15. This latter result along with the result \star deduced previously tells us that $((u_1 + u_2) + u_3)$ **part_of** $(u_1 + (u_2 + u_3))$ by L3.3. In much the same way we can deduce $(u_1 + (u_2 + u_3))$ **part_of** $((u_1 + u_2) + u_3)$. We then prove the conclusion by applying A1.7. \square $$t$$ concatenation_of $(t_1, t_2) =_{def} t_1$ meets $t_2 \wedge t$ sum_of (t_1, t_2) (D3.2) $$t_1$$ starts $t =_{def} \exists t_2. \ t_2 : Connected_Temporal_Region \land t$ concatenation_of (t_1, t_2) (D3.3) $$t_2 \text{ ends } t =_{def} \exists t_1. \ t_1: Connected_Temporal_Region \land t \text{ concatenation_of } (t_1, t_2)$$ (D3.4) K. Trentelman / A Temporal Theory for the Basic Formal Ontology: Theorem Proofs 7 $$t_1 \text{ meets } t_2 \Rightarrow \exists t. \ t: Connected_Temporal_Region \land t \text{ concatenation_of } (t_1, t_2)$$ (A3.6) \wedge t_1 starts t \wedge t_2 ends t $$t \ \mathbf{concatenation_of} \ (t_1, t_2) \Rightarrow duration(t) = duration(t_1) + duration(t_2)$$ (A3.7) $$t_1$$ earlier_than $t_2 =_{def} \exists t. \ t: Connected_Temporal_Region \land t_1 \text{ meets } t \land t \text{ meets } t_2$ (D3.5) $$t_1$$ earlier_than_or_meets $t_2 =_{def} t_1$ earlier_than $t_2 \lor t_1$ meets t_2 (D3.6) $$t: Connected_Temporal_Region \Rightarrow \neg(t \text{ earlier_than_or_meets } t)$$ (L3.7) $$t_1, t_2$$: $Connected_Temporal_Region \land t_1$ earlier_than_or_meets t_2 (L3.8) $\Rightarrow \neg(t_2 \text{ earlier_than_or_meets } t_1)$ **Proof.** L3.7 follows from A3.5, D3.5 and D3.6. L3.8 follows from A3.4 and L3.7. \square ## **Section 4: Scattered Regions** $$u$$ difference_of $(u_2, u_1) =_{def} \forall u'. \ u'$ overlaps $u \Leftrightarrow (\exists u''. \ u'' \text{ part_of } u_2)$ (D4.1) $\land u'' \text{ discrete_from } u_1 \land u' \text{ overlaps } u'')$ $$u_1$$ interior_part_of $u_2 =_{def} u_1$ proper_part_of $u_2 \wedge \exists u.$ u difference_of (u_2, u_1) $\wedge (\forall u'. \ u' \text{ partially_overlaps } u_1 \Rightarrow u' \text{ overlaps } u)$ $$u_1$$ crosses $u_2 =_{def} u_1$ overlaps $u_2 \wedge \exists u. \ u$ difference_of $(\mathcal{U}, u_2) \wedge u_1$ overlaps u (D4.3) $$u_1$$ straddles $u_2 =_{def} \forall u.$ u_1 interior_part_of $u \Rightarrow u$ crosses u_2 (D4.4) $$\neg(u \text{ crosses } u)$$ (L4.1) $$u_1 \text{ straddles } u_2 \Rightarrow \neg(u_1 \text{ interior_part_of } u_2)$$ (L4.2) $$u_1 \text{ part_of } u_2 \Rightarrow u_1 \text{ interior_part_of } u_2 \lor u_1 \text{ straddles } u_2$$ (T4.1) $$u$$ difference_of $(\mathcal{U}, u_2) \wedge u_1$ overlaps $u \Rightarrow \neg(u_1 \text{ part_of } u_2)$ (L4.3) $$u_1 \operatorname{crosses} u_2 \Rightarrow \neg(u_1 \operatorname{part_of} u_2) \wedge u_1 \operatorname{overlaps} u_2$$ (L4.4) $$u_1$$ partially_overlaps $u_2 \Rightarrow u_1$ crosses $u_2 \wedge u_2$ crosses u_1 (L4.5) **Proof.** In order to prove L4.1, we assume u crosses u. A contradiction is created by unfolding D4.3, D4.1 and D1.5, and by using L1.11. In order to prove L4.2 suppose u_1 straddles u_2 and assume u_1 interior_part_of u_2 . Then u_2 crosses u_2 by D4.4 which contradicts L4.1. T4.1 can then be proved by L4.2. We prove L4.3 by contradiction. We know there is some u'' such that u'' part_of \mathcal{U} and u'' discrete_from u_2 and u_1 overlaps u'' by D4.1 and modus ponens. If we assume u_1 part_of u_2 , then for any u''' if u''' overlaps u_1 then u''' overlaps u_2 by A1.5. Let u''' be u''. Since u'' overlaps u_1 by L1.11, we have u'' **overlaps** u_2 which contradicts u'' **discrete_from** u_2 by D1.5. L4.4 can be proved by L4.3 and D4.3. L4.5 follows from D1.11, L4.4 and L1.11. \square $$u'$$ boundary_of $u =_{def} \forall u''$. u'' part_of $u' \Rightarrow u''$ straddles u (D4.5) $$u'$$ closure_of $u =_{def} \forall u''$. u'' boundary_of $u \Rightarrow u'$ sum_of (u, u'') (D4.6) $$u_1$$ separate_from $u_2 =_{def} \exists u_1', u_2'. \ u_1'$ closure_of $u_1 \wedge u_2'$ closure_of u_2 (D4.7) $\Rightarrow u_1'$ discrete_from $u_2 \wedge u_1$ discrete_from u_2' $$u'$$ closure_of $u \Rightarrow u'$ identical_to u (A4.1) $$u_1$$ discrete_from $u_2 \Rightarrow u_1$ separate_from u_2 (L4.6) **Proof.** L4.6 can be proved by A4.1 and D4.7 with D1.5 and L1.11. \square $$t', t'' : Connected_Temporal_Region \land t'$$ interior_part_of t'' (A4.2) $$\Rightarrow \exists t_1, t_2. \ t_1, t_2 : Connected_Temporal_Region \land t''$$ concatenation_of (t_1, t', t_2) $$t', t''$$: Connected_Temporal_Region $\wedge t'$ proper_part_of $t'' \wedge t'$ straddles t'' (A4.3) $\Rightarrow t'$ starts $t'' \lor t'$ ends t'' $$t_1, t_2$$: Connected_Temporal_Region $\land t_1$ crosses t_2 (A4.4) $\Rightarrow \exists t', t, t''$. t', t, t'' : Connected_Temporal_Region $$\land (t_1 \text{ concatenation_of } (t', t) \land t_2 \text{ concatenation_of } (t, t''))$$ $$\forall (t_2 \text{ concatenation_of } (t', t) \land t_1 \text{ concatenation_of } (t, t''))$$ $$t'$$ during $t'' =_{def} t'$ interior_part_of t'' (D4.8) $$t', t'' : Connected_Temporal_Region \land t'$$ proper_part_of $t'' \Rightarrow t'$ starts $t'' \lor t'$ ends $t'' \lor t'$ during t'' **Proof.** T4.2 can be proved by T4.1, D4.8 and A4.3. \square $$t_1, t_2$$: $Connected_Temporal_Region \land t_1$ earlier_than_or_meets $t_2 \Rightarrow t_1$ discrete_from t_2 (L4.7) **Proof.** We prove L4.7 by contradicition. Assume $\neg(t_1 \, \mathbf{discrete_from} \, t_2)$, *i.e.* $t_1 \, \mathbf{overlaps} \, t_2$ by D1.5. Then by L1.21 one of the following holds: $t_1 \, \mathbf{identical_to} \, t_2$ or $t_1 \, \mathbf{proper_part_of} \, t_2$ or $t_2 \, \mathbf{proper_part_of} \, t_1$ or $t_1 \, \mathbf{partially_overlaps} \, t_2$. Consider the case where $t_1 \, \mathbf{identical_to} \, t_2$. Suppose $t_1 \, \mathbf{meets} \, t_2$, then a contradiction arises from A3.5. Suppose $t_1 \, \mathbf{earlier_than} \, t_2$, then there is some t such that $t_1 \, \mathbf{meets} \, t$ and $t \, \mathbf{meets} \, t_2$ by D3.5, and a contradiction again arises from A3.5. Consider the case where $t_1 \, \mathbf{proper_part_of} \, t_2$, then $t_1 \, \mathbf{starts} \, t_2$ or $t_1 \, \mathbf{ends} \, t_2$ or $t_1 \, \mathbf{during} \, t_2$ by T4.2. Whether $t_1 \, \mathbf{meets} \, t_2$ or $t_1 \, \mathbf{earlier_than} \, t_2$ it is possible to build concatenations using D3.2 with D3.3, D3.4, D4.8 and A4.2 such that a contradiction arises from A3.5. We can similarly create a contradiction for the case where $t_2 \, \mathbf{proper_part_of} \, t_1$. Now consider the case where $t_1 \, \mathbf{partially_overlaps} \, t_2$. Then $t_1 \, \mathbf{crosses} \, t_2$ by L4.5, and there is some t', $t_1 \, \mathbf{concatenation_of} \, (t', t)$ and $t_2 \, \mathbf{concatenation_of} \, (t', t)$ and $t_2 \, \mathbf{concatenation_of} \, (t', t')$ by A4.4. Whether $t_1 \, \mathbf{meets} \, t_2$ or $t_1 \, \mathbf{earlier_than} \, t_2$ it is possible to build concatenations using D3.2 such that a contradiction arises from A3.5. \square t_1, t_2 : Connected_Temporal_Region $\wedge t_1$ earlier_than_or_meets $t_2 \Rightarrow t_1$ separate_from t_2 (T4.3) **Proof.** T4.3 can be proved by L4.7 and L4.6. \square Note that in the sequel the formula $\bigwedge_{i=1}^{n-1} x_i$ rel x_{i+1} can be interpreted as x_1 rel $x_2 \wedge x_2$ rel $x_3 \wedge \ldots \wedge x_n$ x_{n-1} rel x_n for any relation rel between instances x_1, \ldots, x_n . $$r: Scattered_Spatial_Region =_{def} \exists r_1, \dots, r_n: r_1, \dots, r_n: Connected_Spatial_Region$$ (D4.9) $$\land r \mathbf{sum_of}(r_1, \dots, r_n) \land \bigwedge_{i=1}^{n-1} r_i \mathbf{discrete_from} \ r_{i+1}$$ $$(Spatial_Region = Connected_Spatial_Region \cup Scattered_Spatial_Region)$$ $$\land (Connected_Spatial_Region \cap Scattered_Spatial_Region = \emptyset)$$ (A4.5) $$r: Connected_Spatial_Region \lor r: Scattered_Spatial_Region$$ (T4.4) $$r: Scattered_Spatial_Region \Rightarrow r \text{ part_of } \mathcal{R}$$ (L4.8) $$r \operatorname{part_of} \mathcal{R}$$ (T4.5) **Proof.** T4.4 can be proved by A4.5 and A1.3. L4.8 can be proved by D4.9, L2.11, L3.3 and L3.6. T4.5 can be proved by T4.4, L2.11 and L4.8. \square $$r:Spatial_Region \Rightarrow \forall t. \ r:Spatial_Region \ \mathbf{at} \ t$$ (A4.6) $$r_1 \operatorname{part_of} r_2 \Rightarrow \forall t. \ r_1 \operatorname{part_of} r_2 \operatorname{at} t$$ (A4.7) $$u: Scattered_Spatiotemporal_Region =_{def}$$ $$\exists u_1, \dots, u_n. \ u_1, \dots, u_n: Connected_Spatiotemporal_Region$$ $$\land u \text{ sum_of } (u_1, \dots, u_n)$$ $$(D4.10)$$ $$\wedge \; \big(\bigwedge_{i=1}^{n-1} time(u_i) \; \textbf{earlier_than_or_meets} \; time(u_{i+1}) \\ \vee \; \bigwedge_{i=1}^{n-1} space(u_i) \; \textbf{discrete_from} \; space(u_{i+1}) \big)$$ $$\vee \bigwedge_{i=1}^{n-1} space(u_i)$$ discrete_from $space(u_{i+1})$) (Spatiotemporal Region (A4.8) $= Connected_Spatiotemporal_Region \cup Scattered_Spatiotemporal_Region)$ \land (Connected_Spatiotemporal_Region \cap Scattered_Spatiotemporal_Region $= \emptyset$) $$u:Connected\ Spatiotemporal\ Region\ \lor u:Scattered\ Spatiotemporal\ Region\ (T4.6)$$ $$u: Scattered_Spatiotemporal_Region \Rightarrow u \text{ part_of } \mathcal{U}$$ (L4.9) $$u \operatorname{part_of} \mathcal{U}$$ (T4.7) $$u: Spatiotemporal_Region \wedge \mathcal{U}$$ part_of $u \Rightarrow u$ identical_to \mathcal{U} (L4.10) **Proof.** T4.6 can be proved by A4.8 and A1.3. L4.9 can be proved by D4.10, A2.11, L3.3 and L3.6. T4.7 can be proved by T4.6, A2.11 and L4.9. L4.10 can be proved by T4.7 and A1.7. \square $$t: Scattered_Temporal_Region =_{def}$$ (D4.11) $\exists t_1, \ldots, t_n. \ t_1, \ldots, t_n: Connected_Temporal_Region$ $$\wedge \ t \ extstyle{ extstyle to to sum_of} \ (t_1,\dots,t_n) \wedge \bigwedge_{i=1}^{n-1} t_i \ extstyle{ extstyle earlier_than_or_meets} \ t_{i+1}$$ $$(Temporal_Region = Connected_Temporal_Region \cup Scattered_Temporal_Region)$$ (A4.9) $\land (Connected_Temporal_Region \cap Scattered_Temporal_Region = \emptyset)$ $$t: Connected_Temporal_Region \lor t: Scattered_Temporal_Region$$ (T4.8) $$t: Scattered_Temporal_Region \Rightarrow t \text{ part_of } \mathcal{T}$$ (L4.11) $$t \, \mathbf{part_of} \, \mathcal{T}$$ (T4.9) **Proof.** T4.8 can be proved by A4.9 and A1.3. L4.11 can be proved by D4.11, L2.7, L3.3 and L3.6, whereas T4.9 can be proved by T4.8, L2.7 and L4.11. \Box $$u: Scattered_Spatiotemporal_Instant =_{def} u: Scattered_Spatiotemporal_Region$$ (D4.12) $\land u \text{ sum of } (u_1, \dots, u_n)$ $\land u_1: Connected_Spatiotemporal_Instant$ $\wedge \ldots \wedge u_n$: Connected_Spatiotemporal_Instant $$u: Scattered_Spatiotemporal_Interval =_{def} u: Scattered_Spatiotemporal_Region$$ (D4.13) $$\land u \text{ sum_of } (u_1, \dots, u_n)$$ $\land (u_1: Connected_Spatiotemporal_Interval)$ $\vee \ldots \vee u_n$: Connected_Spatiotemporal_Interval) $(Spatiotemporal_Instant)$ (A4.10) $= Connected_Spatiotemporal_Instant \cup Scattered_Spatiotemporal_Instant)$ \land (Connected_Spatiotemporal_Instant \cap Scattered_Spatiotemporal_Instant $= \emptyset$) $(Spatiotemporal_Interval)$ (A4.11) $= Connected_Spatiotemporal_Interval \cup Scattered_Spatiotemporal_Interval)$ \land (Connected_Spatiotemporal_Interval \cap Scattered_Spatiotemporal_Interval = \emptyset) $$\neg(u \operatorname{part_of} \mathcal{T}) \land \neg(u \operatorname{part_of} \mathcal{R}) \land \neg(t \operatorname{part_of} \mathcal{U}) \land \neg(t \operatorname{part_of} \mathcal{R})$$ $$\land \neg(r \operatorname{part_of} \mathcal{U}) \land \neg(r \operatorname{part_of} \mathcal{T})$$ (A4.12) ### **Section 5: Processual Entities and Independent Continuants** $$Processual_Entity \ is_a \ Occurrent \qquad (A5.1)$$ $$Independent_Continuant \ is_a \ Continuant \qquad (A5.2)$$ $$p \ has_participant \ c \ at \ t \land t' \ part_of \ t \Rightarrow p \ has_participant \ c \ at \ t' \qquad (A5.3)$$ $$P \ has_participant \ C =_{def} \ \forall p. \ p:P \Rightarrow \exists c,t. \ c:C \ at \ t \land p \ has_participant \ c \ at \ t \qquad (D5.1)$$ $$c \ exists_at \ t =_{def} \ t: Connected_Temporal_Instant \land \exists p. \ p \ has_participant \ c \ at \ t \qquad (D5.2*)$$ $$p \ occurs_at \ t =_{def} \ t: Connected_Temporal_Instant \land \exists p. \ p \ has_participant \ c \ at \ t' \qquad (D5.3*)$$ $$c \ exists_at \ t =_{def} \ \forall t'. \ t' \ part_of \ t \Rightarrow \exists p. \ p \ has_participant \ c \ at \ t' \qquad (D5.2)$$ $$p \ occurs_at \ t =_{def} \ \forall t'. \ t' \ part_of \ t \Rightarrow \exists p. \ p \ has_participant \ c \ at \ t' \qquad (D5.3)$$ $$c \ exists_at \ t \land t' \ part_of \ t \Rightarrow p \ occurs_at \ t' \qquad (A5.4)$$ $$p \ occurs_at \ t \land t' \ part_of \ t \Rightarrow p \ occurs_at \ t' \qquad (A5.5)$$ $$c \ exists_at \ t_1 \land c \ exists_at \ t_2 \land t \ concatenation_of \ (t_1, t_2) \Rightarrow p \ occurs_at \ t \qquad (A5.6)$$ $$p \ occurs_at \ t_1 \land p \ occurs_at \ t_2 \land t \ concatenation_of \ (t_1, t_2) \Rightarrow p \ occurs_at \ t \qquad (A5.7)$$ $$t \ first_instant_of \ p \ =_{def} \ t: Connected_Temporal_Instant \land p \ occurs_at \ t \qquad (A5.7)$$ $$t \ last_instant_of \ p \ =_{def} \ t: Connected_Temporal_Instant \land p \ occurs_at \ t \qquad (A5.7)$$ $$t \ last_instant_of \ p \ =_{def} \ t: Connected_Temporal_Instant \land p \ occurs_at \ t \qquad (A5.7)$$ $$t \ last_instant_of \ p \ =_{def} \ t: Connected_Temporal_Instant \land p \ occurs_at \ t \qquad (A5.7)$$ $$t \ last_instant_of \ p \ =_{def} \ t: Connected_Temporal_Instant \land p \ occurs_at \ t \qquad (A5.7)$$ $$t \ last_instant_of \ p \ =_{def} \ t: Connected_Temporal_Instant \land p \ occurs_at \ t \qquad (A5.7)$$ $$t \ last_instant_of \ p \ =_{def} \ t: Connected_Temporal_Instant \land p \ occurs_at \ t \qquad (A5.8)$$ $$t \ last_instant_of \ p \ =_{def} \ t: Connected_In \ r_1 \ at \ t \land c_2 \ located_in \ r_2 \ at \ t \qquad (A5.8)$$ $$t \ located_in \ C_2 \ def \ \forall c_1, t: \ c_1 \ instance_of \ C_1 \ at \ t \Rightarrow \exists c_2 \ c_2 \ instance_of \ C_2 \ at \ t \qquad (A5.8)$$ $$t \ located_i$$ $\Rightarrow r \operatorname{part_of} space(u) \land t \operatorname{part_of} time(u)$ $p: Instantaneously_Occurring_Processual_Entity \\ =_{def} \exists u, t. \ p \ \textbf{located_at} \ u \land t \ \textbf{identical_to} \ time(u) \land t : Temporal_Instant \\$ p located_at $u \wedge u$: $Connected_Spatiotemporal_Region \wedge t$ first_instant_of p (A5.10) $\Rightarrow t$ starts time(u) p located_at $u \wedge u$: $Scattered_Spatiotemporal_Region \wedge u$ sum_of (u_1, \dots, u_n) (A5.11) $\wedge t$ first_instant_of $p \Rightarrow t$ starts $time(u_1)$ > p' **preceded_by** $p =_{def} \exists t, t'. \ t, t' : Connected_Temporal_Instant$ (D5.9*) $\land p$ **occurs_at** $t \land p'$ **occurs_at** $t' \land t$ **earlier_than** t' p' preceded_by $p =_{def} \exists u, u'$. p located_at $u \land p$ located_at u' (D5.9) $\land ((u, u': Connected_Spatiotemporal_Region \Rightarrow time(u)$ earlier_than time(u')) $\lor (u: Connected_Spatiotemporal_Region \land u': Scattered_Spatiotemporal_Region)$ $\wedge \, u' \, \mathbf{sum_of} \, (u'_1, \dots, u'_n) \Rightarrow \mathit{time}(u) \, \mathbf{earlier_than} \, \mathit{time}(u'_1))$ $\lor (u : Scattered_Spatiotemporal_Region \land u' : Connected_Spatiotemporal_Region$ $\wedge u \text{ sum_of } (u_1, \dots, u_n) \Rightarrow time(u_n) \text{ earlier_than } time(u'))$ $\lor (u : Scattered_Spatiotemporal_Region \land u' : Scattered_Spatiotemporal_Region$ $\wedge\,u\,\text{sum_of}\,(u_1,\ldots,u_n)\wedge u'\,\text{sum_of}\,(u_1',\ldots,u_n')$ $\Rightarrow time(u_n)$ earlier_than $time(u'_1)))$ t last_instant_of $p \wedge t'$ first_instant_of $p' \wedge t$ earlier_than t' (T5.1) $\Rightarrow p'$ preceded_by p **Proof.** T5.1 follows from D5.4, D5.5 and D5.9. \square $P \ preceded_by \ P' =_{def} \ \forall p. \ p: P \Rightarrow \exists p'. \ p': P \land p \ preceded_by \ p'$ (D5.10) p' immediately_preceded_by $p =_{def} \exists t. \ t \ \text{last_instant_of} \ p \land t \ \text{first_instant_of} \ p'$ (D5.11*) $$p' \ \mathbf{immediately_preceded_by} \ p =_{def}$$ (D5.11) $$\exists u, u'. \ p \ \mathbf{located_at} \ u \land p \ \mathbf{located_at} \ u' \\ \neg (p, p': Instantaneously_Occurring_Processual_Entity) \\ \land ((u, u': Connected_Spatiotemporal_Region \Rightarrow time(u) \ \mathbf{meets} \ time(u')) \\ \lor (u: Connected_Spatiotemporal_Region \land u': Scattered_Spatiotemporal_Region \\ \land u' \ \mathbf{sum_of} \ (u'_1, \dots, u'_n) \Rightarrow time(u) \ \mathbf{meets} \ time(u'_1)) \\ \lor (u: Scattered_Spatiotemporal_Region \land u': Connected_Spatiotemporal_Region \\ \land u \ \mathbf{sum_of} \ (u_1, \dots, u_n) \Rightarrow time(u_n) \ \mathbf{meets} \ time(u')) \\ \lor (u: Scattered_Spatiotemporal_Region \land u': Scattered_Spatiotemporal_Region \\ \land u \ \mathbf{sum_of} \ (u_1, \dots, u_n) \land u' \ \mathbf{sum_of} \ (u'_1, \dots, u'_n) \\ \Rightarrow time(u_n) \ \mathbf{meets} \ time(u'_1)))$$ $$C' \ transformation_of \ C =_{def} \ \forall c, t. \ c: C \ \mathbf{at} \ t \Rightarrow \exists t'. \ c: C' \ \mathbf{at} \ t'$$ $$\land t \ \mathbf{earlier_than_or_meets} \ t' \land \neg (\exists t''. \ c: C \ \mathbf{at} \ t'' \land c: C' \ \mathbf{at} \ t'')$$ (D5.12) $$c'$$ derives_from $c \Rightarrow \forall t. \ \neg(c \text{ identical_to } c' \text{ at } t)$ (A.5.12) $$c' \ \mathbf{derives_from} \ c \Rightarrow \exists t_1, t_2. \ t_1, t_2 \colon Connected_Temporal_Interval \tag{A.5.13}$$ $$\land c \ \mathbf{exists_at} \ t_1 \land (\forall t_1'. \ t_1 \ \mathbf{earlier_than_or_meets} \ t_1' \Rightarrow \neg (c \ \mathbf{exists_at} \ t_1'))$$ $$\land c' \ \mathbf{exists_at} \ t_2 \land (\forall t_2'. \ t_2' \ \mathbf{earlier_than_or_meets} \ t_2 \Rightarrow \neg (c' \ \mathbf{exists_at} \ t_2'))$$ $$\land \exists t. \ t \colon Connected_Temporal_Region \land t \ \mathbf{ends} \ t_1 \land t \ \mathbf{starts} \ t_2$$ $$\land (c \ \mathbf{located_in} \ r \ \mathbf{at} \ t \land c' \ \mathbf{located_in} \ r' \ \mathbf{at} \ t \Rightarrow r \ \mathbf{overlaps} \ r' \ \mathbf{at} \ t)$$ $$C' \ derives_immediately_from \ C =_{def} \ \forall c,t. \ c:C \ \text{at} \ t$$ (D5.13) $$\Rightarrow \exists c',t'. \ c':C' \ \text{at} \ t' \land t \ \text{earlier_than_or_meets} \ t' \land c' \ \text{derives_from} \ c$$ $$C_n \ derives_from \ C_0 =_{def} \bigwedge_{i=0}^{n-1} C_{i+1} \ derives_from \ C_i$$ (D5.14)